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I. Phys.: Condens. Mat1er6 (1994) 48074822. Printed in the UK 

A theory for a certain crossover in relaxation phenomena in 
glasses 
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Physik-Depariment. Technische Universitat Miinchen, D-85141 Garching, Germany 

Received 1 March 1994. in final form 3 May 1994 

Abstract. It is shown that the simplified mode coupling heory for supercooled liquid dynamics 
allows for a scenario where a first component of the system is within an ideal glass state while 
the second component exhibits a crossover from an ideal glass state to a state of almost liquid 
behaviour. The dynamics near the crossover is governed by two relevant control parameten and 
it can be described by a scaling law. There appear f r a a  spectra. Under certain simplifying 
assumptions or symmeuy conditions the crossover becomes an ergodic to non-ergodic hansition. 
where the Edwards-Anderson parameter of the semnd component changes continuously from 
zero to a non-zem value. 

1. Introduction 

A glass is a state of condensed matter, where the particles are arrested in a spontaneously 
frozen disordered array. Conventionally one assumes that in an ideal glass the motion of 
all particles is non-ergodic. However, one can also imagine a system of two components 
so that one is in a non-ergodic glass state while the other exhibits Iiquid-like dynamics. 
Such a situation is anticipated for disordered crystals. In that case the disordered matrix. 
produced for example by impurities, can be viewed as a glassy state of one component. 
Other modes, such as for example the density fluctuations of electrons, may exhibit liquid 
flow. In this paper the scenario for a liquid-to-glass transition of one component of a many 
particle system occurring in a glassy mamx shall be analysed within mode coupling theory. 

Let us assume that the dynamics of a classical many particle system is described by 
a set of M conventionally defined autocorrelation functions a&), q = 1, . . . M ;  Q9(0) = 
I ,  b9(0) = 0. If the system is in an ergodic liquid state, the correlation functions decay 
to zero for large times. However, if it is in an ideal glass state, there is a spontaneous 
arrest of some fluctuations, i.e. Q9(t + CO) = f 9  with f9 > 0 for some q (Edwards and 
Anderson 1975). Suppose one varies some control parameter x ,  such as the density, the 
composition or the inverse temperature. An ideal liquid-to-glass transition is said to occur 
at some critical point x, if, for x < x,, all longtime limits f 9  vanish, while for x > xc 
an ideal glass state is found. Mode coupling theory (MCT) describes such liquid-to-glass 
transitions; for a review, see Gotze and Sjogren (1992). The basic version of the MCT, to 
which the following discussion shall be reshicted, deals with the set of equations of motion: 

(1.1) 

(1.2) 

&,(t) + w9b,(t) + S2iQq(t) + S2; m,(t - t')&,(t')dt' = 0 l 
m9(t)  = F9(Q(N. 

t Also a? Max-Planck-lnstitut fur Physik (Werner-Heisenberg-Institut), D-80805 Miinchen, Gemmy. 
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Here Q, > 0, vq > 0 are scales for the short-time transient dynamics. The mode coupling 
functional 3 is an absolutely monotonic function; for simple liquids it is a second-order 
polynomial (Bengtzelius et al 1984): 

T Frmosch and tV Gdrze 

The vertices V ( q ,  k p )  are the coupling constants of the theory; they are combined to a vector 
V in the N-dimensional control parameter space W. In applications the system moves on a 
smooth path V(x), traversed upon changing x .  The long-time limit f ,  called the Edwards- 
Anderson parameter, the non-ergodicity parameter or the Debye-Waller factor, obeys the 
set of M implicit equations (Bengtzelius ef a1 1984) 

f q / ( 1 - f q ) = F 9 ( V - f )  o < f 9  < I .  ( 1.44 

Usually these equations have many solutions for given V. The long-time limit is the 
maximum solution in the following sense: if f' obeys ( 1 . 4 ~ )  one gets (Gotze 1991) 

f;< f, q = l ,  .... M. (1.4b) 

Thus, glass transitions are bifurcations of (1.4). occurring at some critical points for the 
control parameters Vc = V(x,). There the long-time limit f exhibits a singularity if 
considered as function of V. The Vc are therefore called glass transition singularities 
(GTS). For V # Vc,  the long-time limits f, are smooth functions of V. The MCT deals 
with the dynamics near the bifurcation points Vc. 

If x crosses .re the non-ergodicity parameter f can either change continuously (type- 
A transition) or discontinuously (type-B transition). The simple M = 1 model with 
F(f) = u l f + u z f 2  exhibits both types (Gotze 1984). The quadratic polynomial (1.3) brings 
out generically only type-B transitions and the results for that case have been compared in 
detail with experiments during the past years. From an analysis of light scattering for 
the glass former Ca(N0&K(NO3) (Li ef al 1992, Cummins er nl 1993) and other simple 
systems, one concludes that the MCT type-B scenario describes a number of experimental 
features in supercooled liquids adequately; for a summary see C u m i n s  eral(l994). Studies 
of the glass transition in  hard sphere colloids with photon correlation spectroscopy confirmed 
MCT predictions to a 15% accuracy level (Van Megen and Underwood 1993). Type-A 
transitions can occur generically only if the mode coupling functional 3q contains linear 
terms. Such terms arise if one considers interactions of the particles with a static random 
potential as it may be provided by an arrested array of defects or impurities. MCT results for 
such transitions have been tested against computer experiments done for the Loren2 model 
(Gotze et al 1981). 

A static array of impurities can be viewed as a glass state for the impurity particles. 
Thus there appears the question: under which conditions can (l.l)-(l.3) imply a glass state, 
within which a type-A transition occurs? It shall be shown that the MCT with quadratic 
functional (1.3) can yield a glass state, where V is close to a type-A GTS. The long-time 
dynamics for such states shall be worked out. In this paper the equations (1.1)-(1.3) shall be 
considered as a mathematical model; its justification within a microscopic theory shall not 
be considered. It is the aim to provide a scenario for a possible crossover for the dynamics 
of superionic glasses, amorphous semiconductors, mixed crystals and the like. 

Sjogren (1986) considered an M = 2 model with 3 1 ( f )  = uf?,32 = v $ f i f i .  Within 
this model there is no effect of the second variable on the first. There is a type-B transition 
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where fi jumps from zero to 1/2 if U shifts through U, = 4. The second variable is zero 
if U = usfi - 1 is negative, and then fi = U + U(u2) for U 2 0. Quite the same type- 
A transition occurs for an M = 2 model with Ft(f) = ut f: + u z f ~ , F z ( f )  = u*ft fz 
(Krieger and Bosse 1987, Gotze and Haussmann 1988). For both models the special forms 
for the mode coupling functionals was motivated by physical reasoning. In the first case 01 
referred to coherent density fluctuations while 0 2  described the density of a single tagged 
particle. The second case modelled schematically a symmetric molten salt with Q1 referring 
to density and 0 2  to charge fluctuations. The assumed symmetry of the interactions implies 
then the peculiar form of 32 (Bosse and Munakata 1982). For applications, one would 
also like to understand the case where there is a finite density of the tagged particles or 
where the interaction symmetry is broken. Furthermore, one would like to discuss the two 
specified problems on the basis of less schematic models. Therefore we shall consider how 
the quoted results get modified if more general situations are considered. 

The analysis begins in  section 2 by identifying the indicated type-A GTS withii the glass 
for the general M = 2 model. It will be shown (section 3) that the long-time dynamics near 
the GTS can be described by a two-parameter scaling law, which can be reduced to the one 
studied earlier (Gotze 1984) for type-A transitions. The general case for arbitrary M shall 
be analysed in section 4. It will be shown that the long-time dynamics is described by the 
mentioned scaling law, which thereby is demonstrated to characterize the general dynamics 
near the specified GTS. 

2. The type-A glass transition singularity for the two-component model 

Let us begin with the general M = 2 model. Equation ( 1 . 4 ~ )  shall be rewritten as 
f, = 14 where '& = F9/(1 + F9). Let us simplify the notation by writing Ft = 

To obtain a non-vanishing long-time limit for CP~I while that for 02 is zero, one has to 
solve the cubic equation f 1 ( 1  +TI) = 31 with J=? = uf: and to observe (1.4b). Such a 
solution exists if and only if U 2 4 with f t  = f, where we introduce f = [ 1 + -]/2. 
Since the type-B liquid-to-glass transition occurring near U - 4 shall not be considered, we 
restrict the discussion to U > 4. Let us eliminate U in favour o f f  by writing 

u f ~ + u l f l f z + u z f i ' , F 2 =  wf:+wlfifi+ wzfi'. 

U = l/f (1 - f )  1/2 < f c 1. (2.1) 

Thus one gets for f2 = 0 : fi = f. For sufficiently small f2 the three solutions 
For fi one checks the small f~ expansion of the cubic equation do not bifurcate. 

f t  = f + hf2 + O(f2), where 

h = (1 - f)%I f/(2f - 1). (2.2) 

Substitution of this result into 12 yields 

Here the following abbreviations have been used: 

2 o = w 1 f - l  y = w f  

A = w z + h f f .  



4810 

For the existence of the solution f2 = 0 it is necessary that y = 0. If A # 1, the equation 
3 - fz = 0 indeed has two small fz-solutions: fi = 0 and fz = U / (  1 -A)  + S(u2). Under 
these restrictions the described bifurcation may occur for U = 0. The possibility A = 1 shall 
not be considered, since it leads to higher-order singularities (Gotze and Sjogren 1992). If 
A > 1 one proves the existence of a solution f,” > 0 of fz = %( fi) for y = U = 0, and 
the found bifurcation (1.4a) would violate (1.4b). Therefore one has to require 

O < A < l .  (2.6) 
It is easy to check that solution of the equations ( 1 . 4 ~ )  and (1.4b) for positive but small 
u t ,  UZ, w .  wz is given by 

(2.7a) 
(2.7b) 

(2.8) 
The model exhibits a glass transition singularity on a smooth manifold in R of co- 

T Franosch and W Gotze 

fi = f + hg + W2) 
fz = g + 0(gZ) 

g = g(u, y )  = [U + Juz + 4y(l - A)]/2(1 -A). 

dimensionality 2, specified by the two equations 

u = o , y = o  GTS. (2.9) 
The rapid variation of f, near the GTS is described by two smooth functions of the control 
parameter vector V : u(V) and y(V). They serve as the relevant control parameters. The 
leading-order terms f t  - f, fz are given by g, which is a homogeneous function of U and 
y .  If one varies the control parameter according to 

L T = & 5 2  y = P Q  52>0 (2.10) 

g = j Q  (2.11) 
the function g merely changes by a scale factor 

where j = g(6, 3) .  
Equations (2.10) describe scaling lines in the half plane of the relevant control parameters 

( U ,  y ) ,  These are half parabolas terminating for Q -b 0 in the GTS. The function g describes 
the solution of (1.4) correctly in leading linear order of Q; the corrections to the results 
(2.7) and (2.8) are proportional to 52’. 

Let us consider the path V(x)  of the system, induced by a change of the external control 
parameter x .  Equations (2.4) map this path on a curve C in the relevant control parameter 
half-plane x -+ (u(x),  y ( x ) ) .  Generically one can write u ( x )  a (x  - x,) /x ,  for x + x, 
and therefore U is called the separation parameter. Generically y > 0, and therefore C 
avoids the GTS and the f, are smooth functions of x .  However, if y ( x )  is small, curve 
C can come close to the GTS. There is then a rapid crossover from a regime U < -do, 
do = Jw, where fz is very small to a regime a > 6, where fz becomes of order 
unity. So there is a rapid crossover for x - xe from a glass with one component exhibiting 
a very small non-ergodicity parameter fz to a normal glass state. 

If some specialty of the kind mentioned in the introduction enforces y = 0 the result of 
the theory changes. The control parameter space is then reduced in its dimensionality. 
Curve C then consists of two scaling lines. a 
glass where one component behaves ergodically. This solution bifurcates for x = xc to 
fz = o/(l - A) + O(u2) for x > x,. The long-time limit fz increases linearly with 
( x  - x, ) /x ,  on the second scaling line U > 0. Only for y 0 does there occur a type-A 
transition within the glass. 

The identified results of (1.4) are illustrated in figure 1 for f = 0.8, ut = 1.0, wz = 0.3. 
These parameters imply U = 6.25, h = 0.32 and A = 0.7. The generic result y # 0 appears 
as smearing of the ideal type-A transition. 

For x < x, one gets fz = 0, i.e. 
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Figure 1. The non-xgodicity 
parameter f, for the general M = 2 
model. The full curves refer to y = 0 
and the dashed ones to y = 0.02. 
The other parameters, specified in 
section 2, are: v = 6.25, U I  = 
6.0, “2 = 0. W I  = 0.3. 

Figure 2. The semod carrelator 0 = 
02 for the M = 2 model for y = 0 
and collsme specified in lhe caption 
of figure 1, and P I  = Q2 = I ,  
uI = ~2 = 0. The full c w e s  
correspond. from the bottom to top. 
to U = 0.1.0.04.0.016. The long- 
dash broken cume refen to U = 0 
and the chain culye to U = -0.016. 
The short-dash broken culye is the 
short-time asymptote 0 = 1 - r2/2, 
denoted by ‘micro’. 

Figure 3. The correlation spectra 0” 
for the decay curves from figure 2. 
The inserts exhibit the spectra on 
linearscalesforu = 0.1.0.04,0.016 
(tiom boltom to top). 



4812 

3. The scaling law description of the long-time decay 

Figure 2 exhibits the correlator O(t) = Oz(t) for the previously defined two-component 
model for y = 0 and with the same coupling constants as used in figure 1. The transient 
dynamics is specified by UI = uz = 0, Q, = Qz = 1. The full curves exhibit the decay 
curves for U = 0.1,0.04 and 0.016 and the chain one for U = -0.016. The broken curve 
refers to the critical point U = 0. Figure 3 exhibits the relaxation spectra O”(w), i.e. 
the Fourier-cosine transforms of O(t). Notice, that the area of the spectra decreases with 
increasing positive U, since a part of the spectra is contained in the not explicitly shown 
elastic contribution nfzS(w). 

From (1.1) one derives the short-time asymptotics O(t) = 1 - t2/2 + 0(t4), shown as 
short-dash broken curve in figure 2. The transient dynamics is influenced by interaction 
effects only for the terms O(t4) and it yields to pronounced oscillations extending up 
to t = 10. This trmsient motion for I 5 10 produces a flat spectrum extending 
between 0.5 < w c 2. For points off the GTS the decay curves reach their asymptote 
exponentially and this yields an w-independent spectrum for very low frequencies (Gotze 
and Sjogren 1993). However, this approach to the asymptote sets in only for times much 
larger than expected from the scale l /Q = 1 for the transient. The low-frequency spectrum 
Q”(w = 0) is reached only for w << Q. The crossover to the low-frequency plateau occurs 
for smaller w ,  and the larger the spectral enhancement O“(0). the smaller is \U 1. The insets 
of figure 3 demonstrate that it is difficult to appreciate the sensitive variation of the spectra 
near the singularity if one plots them on linear scales. 

The decay curve at the GTS is shown in figure 2 as a broken curve. The corresponding 
spectrum approaches a straight line on the double-logarithmic representation of figure 3 for 
small frequencies. Hence @”(w --f 0) c( l /wl-‘  for U = 0 and this is equivalent to a 
power law decay @(f -+ CO) = ( t ~ / t ) ~ .  From figure 3 one reads off U = 0.33 and from 
figure 2 to = 0.025. For every finite time interval 0 < f < T < w, the correlators depend 
smoothly on the control parameters like U (Gotze and Sjogren 1993). Thus there is a time 
interval to < t c td where @ ( t )  is close to the mentioned power law decay. The time to 
is o-insensitive and marks the end of the short-time transient. The time td specifies the 
crossover to the long-time limit and it tends to infinity as U tends to zero. The evolution 
of this interval to < f 6 td is the origin of the relaxation stretching exhibited in figure 2. 
Via Fourier transformation it leads to the spectral increase shown in figure 3. In order to 
understand the essence behind the described anomalous dynamics the equations of motion 
shall be solved for t >> 1 or w << 1 and parameters approaching the G n .  

Using the notations of section 2 and writing Q p , ( f )  = jl + q(f) ,  02( f )  = Q(t )  one can 
cast the equations of motion in the following form: 

T Franosch and W GoQe 

W ) [ U l f ( l  - f)l - * ( t ) ( 2 f  - 1)/(1 - f) = II(t) (3.1) 
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: 
I&) = [&(I) + uz6( t ) ] /Q$  + U  + - @ ( t  - t’)@(t‘)dt‘ - o(h/f)UJ(r)’ 

:t 1 
- wi[*(t) - hUJ(t)l@(t) - y[2f + *(t)I*(O/.f’ 

f 

@ ( r  - t ’ ) [ ~ @ ~ ( t ‘ ) ’  + w,Q(t‘)o(t‘)+ ~~UJ( t ’ )~]d t ’ .  (3.3c) 

The solution shall be worked out by asymptotic expansion in the limit U -+ 0, y --t 0, 
t 3 oil. In this limit both \I, and UJ tend to zero. Anticipating 11.2(r) to be of higher order 
than the left-hand sides of (3.1) or (3.2) respectively, one gets rlr = h@ in leading order. 
Thus one can generalize (2.7) to 

.$I 

(3.4a) 

(3.4b) 

Here the correlator g(t )  is to be determined from 

y + ug(t) + Ag(r)’ - / ‘ g ( t  - r‘)g(f‘)df’ = 0. (3.5) 
dt o 

One has to show that the U, terms are asymptotically arbitrary small compared to g(t ) .  

has the following solution, to be called critical decay: 
First let us consider the relaxation at the bifurcation point U = 0, y = 0. Then (3.5) 

g ( f )  = (fdt)“ GTS. (3.6) 

The critical exponent a follows from A = r(l -a)’/r(I - k), 0 e a < 1/2. For A = 0.7 
one obtains a = 0.327..  ., and the solution in figure 2, shown as a broken curve, follows 
this law for r z 20. The timescale to has been determined by fitting to the curve U = 0. 
The corresponding critical specbum @“(U) = sin(aa/Z)r(l -a)(wto)’/o is also shown as 
a broken asymptote in figure 3. Substitution of (3.4). (3.6) into (3.3) yields I t  o( ( r o l l ) ” .  
I2 a ( r ~ / t ) ~ “  for large f .  This in turn, with (3.1) and (3.2), implies 

0, = A,(to/ t )”  + O((ro/r)%) GTS. (3.7) 

It is straightforward but cumbersome to evaluate the coefficients A,. 

by introducing another function G, related to g by 
The equation (3.5) for the leading contribution g to the long-time decay can be simplified 

(3.8) 

This new correlator obeys 

d2 + AG(r)’ = p 1‘ G(t - t’)G(t’) dt’. (3.9) 

While g depends on the two parameters U and y ,  function G depends only on the 
combination 

d = Ju’ + 4 y ( l -  A). (3.10) 
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If the two relevant control parameters shift along a scaling line (2.10). the function d rescales 
proportionally to s2 

T Franosch and W Gotze 

d=QJ  (3.11) 

where d is the value of d for the point (2, i.). For vanishing y , d  = 1u1 c( Ix - x,l /x,  
is the distance from the GTS. The function d can viewed as a renormalized distance. The 
parameter y # 0 hinders the distance to vanish d 2 do = ,/W. Equation (3.9) 
is the scaling equation derived originally for the discussion of the ideal typeA transition 
and also for the description of the relaxation within the glass state near type-B transitions 
(Gotze. 1984). Obviously, one can Write 

G ( t )  = d&(t/td) (3.12) 

where the control parameter independent master function 2. obeys the equation 

(3.13) 

Equation (3.5) is scale invariant: with g(t)  also gY(t) = g(ty) is a solution for any y > 0. 
The same holds for (3.9) and (3.13). To fix the solution uniquely initial conditions shall be 
imposed for ? / to  + 0, or ? -+ 0 respectively: 

g(t)(t/to)" -+ 1 6(ip -+ 1. (3.14) 

This fixes the timescale td to 

( tdf to)  = d-1/"(2dT=T)11". (3.15) 

A detailed discussion of 6 can be found elsewhere (Gotze 1990). The monotonically 
decreasing function 6 describes the crossover from the short-time asymptote 

6(8 = (I/?) + AI? + . . . (3.16) 

to the long-time limit &(? -+ CO) = l / m .  The coefficients AI in the expansion (3.16) 
can be expressed in 'em-s of a. The expansion up to P is sufficient in most cases to 
determine the complete G. Equation (3.13) can be solved numerically. From (3.12) one 
obtains for the correlation spectrum 

@"(U) Cd6"(O/Ud). (3.17) 

Here the spectral scale reads cd = did, the frequency scalejs a d  = I f f d  and the master 
spectrum is given by the Fourier cosine transform E"(&) of G(i) by 6" = G/(' im). 

Equations (3.12) and (3.17) are scaling-laws ~expcessing tba~~the~d~endence_ofthe 
solutions on the control parameter d is given by two scales only. The shape of the decay 
curves 6 or spectra &" is independent of d; they are determined by the parameter A. The 
timescale td marks the crossover from the regime to < t < td to i d  < t .  In the former the 
correlator follows closely the critical law (3.6); it depends only weakly and regularly on the 
control parameters as follows from the substitution of (3.12) and (3.16) into (3.8): 

(3.18) 
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The correlator g depends on three variables: g = g(t/to, U ,  y ) .  It is a homogeneous 
function. If the control parameters vary along a scaling line (2.10) and if the time is rescaled 
according to 

1 = i / Q ' l a  (3.19) 

the comelator is altered merely by a scale factor: 

g(t l to.u, Y) = naq. (3.20) 

Here i(9 = [& + m 2 6 ( 3 ] / [ 2 ( 1  - A)]. Approaching the GTs on a scaling line with 
S2 + 0, the leading-order correlator g vanishes proportional to S2 in a self-similar manner. 
One checks that in (3.3) ZI cx Q2. Z2 cx as for Q -+ 0. Therefore (3.1) and (3.2) imply 
in (3.4) 0, a Q2. The scaling law describes the dynamics near the GTS in leading order 
SZ while the leading correction terms vanish proportional to 6. To illustrate a possible 
procedure for an experimental test of the found scaling law, let us consider 4" = Q''/Q$m 
as function of d = o / o k .  Here @km is the maximum of the spechum, i.e. the plateau 
value for small frequencies = W ( w  + 0). The frequency wk is a scaling frequency, 
specifying the spectral knee. If scaling were valid, results for different U would give the 
same 4" against 3 plot. Scaling is only an asymptotic result valid in the limit S2 + 0 

6" = G"(3tdoa) + O(S2). (3.21) 

Therefore the d interval, where the various 4" against D curves coincide, expands for 
Q + 0. The rescaling from a'' to 6" and from o to & is done most conveniently by using 
double logarithmic diagrams. Rescaling then amounts to parallel shifts of the diagrams: 
log@- parallel to the vertical axis and Iogw parallel to the horizontal one. Such a 
scaling plot for the results from figure 3 is shown in figure 4. After having verified the 
scaling scenario one should compare the found master spectrum with the theoretical one, 
which can be obtained from Gotze (1990). Finally, one should demonstrate that the found 
scales vary according to the predictions a dtd and ak cx l / t d  for d + 0. 

1 o' 

10' 

1 a z  

1 

Figure 4. Rescaling of the 
spenra from figure 3, see text. 
The broken line exhibits the crit- 
icd spectrum Q" c( I/&" 
with n = 0.327. For (r = 
O.I,O.@4.0.016, -0.016 the fol- 
lowing sedes have been used re- 
spenively: Qzsr = 1.61. 7.84. . 
44.2, 94.6 and w = 39.4. 651. 
10700.268CQ. 
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Figure 4 shows that the scaling laws do indeed explain the qualitative features of the 
anomalous spectra shown in figure 3 for the dynamics near the GTS.' But the figure also 
shows that rescaled results show appreciable deviations from the correct asymptotic results. 
These findings imply in particular the following hazard for data analysis. The log Q" against 
logo diagram exhibits an inflection point on the wing of the low-frequency spectral peak 
So there is always a large frequency interval where a fit according to W' 0: l / ~ ' - ~ '  is quite 
good. But if the separation from the critical point is not small enough, one gets a' a. 
This is demonstrated in figure 4 for the U = 0.016 result and even more for the spectrum 
for U = 0.04. The true critical spectrum is shown 9s a broken line. In order to exclude the 
misinterpretation of a' as the critical exponent a, one ought to compare data with the full 
theoretical master spectrum. 

A test of the scaling laws can also be done for the correlation functions Qq(t) .  One can. 
for example, discuss the rescaled deviation of the correlator from its long-time asymptote 
$,, = (@,, - f p ) / H q .  If the rescaling factor is chosen to be proportional to the critical 
amplitude and to the distance, Hq = Hh,ldl. all curves 6,,, if considered as a function of 
the rescaled time fd. should coalesce on a master curve: 

6 = H [ 6 ( f )  - I / m ]  i = t / t d .  (3.22) 

The master curve, i.e. the bracket in the preceding equation, is determined by h and can be 
inferred from Gotze (1990). Scaling holds only in the asymptotic limit d --t 0. Thus the 
prediction is that the interval of rescaled times i, where (3.22) is valid, should expand upon 
approaching the GTS. To cover a sufficient time interval one uses conveniently a logarithmic 
abscissa. Figure 5 exhibits such a scaling plot for the data from figure 2. 

Figure S. Rescaled decay CUNCS 

6 = ('D - f ) / ~  from fig- 
ure 2 as a funclion of rescaled 
times i (see text). For U = 
0.1.0.04.0.016. -0.016 lhe follow- 
ing scales have k e n  used respec- 

Io tively: H = 0.1,0.04,0.016,0.016 
and rd = 655.138. 10250,22540. 

4. General derivation of the scaling laws near type-A glass transition singularities 

An ideal type-A transition can be obtained for a one-component model, provided the mode 
coupling functional contains a linear term: F(f2) = ufi-t.Af2. This model can be extended 



A theory for  a certain crossover in relaxation phenomena in glasses 4817 

to describe the complete scenario, discussed in sections 2 and 3. if one generalizes the 
functional to F(f i )  = y + ufi + Af;. It was shown that this scenario can be obtained 
from a quadratic functional (1.3) provided one considers a two-component model. The 
two parameters y and U are then caused by the coupling of one component to another 
background component. The latter provides an effective defect potential, which leads to 
the linear term in 3. In this section the general case M 2 2 shall be studied. It will be 
shown that in this case too a GTS can occur, which is described by a single g, obeying the 
equations (3.5t(3.18). Thus the results of section 3 demonstrate the general case. The full 
theory merely provides more general formulae for U ,  y and A in terms of the mode coupling 
functional (1.3) and generalizes the formulae (2.7) and (3.4). The following derivation 
extends and modifies the corresponding reasoning, made originally for a type-B transition 
(Gotx 1991). 

We start by introducing some notation. Iff" is a solution of (1.4) for control parameters 
Vc,  we write 

f ,  = fg' + (1 - fg')2g9 

C,(V) = 39(V, f') (4.b) 

v = v c  + W. (4.1) 

The various Taylor coefficients of the mode coupling functional F, shall be denoted as 

(4.2b) 

(4.2~) 

These are linear functions of V and one gets 

39(v, f) = fg ' / ( l  - fi) + Cq(v) + x [ C ; k  + cqk(w)lgk + ~ c q k p ( v ) g k & ' p .  (4.3) 

These formulae would also hold if a general polynomial 3 were to be considered in (1.3); 
but (4.3) would then have to be completed by a term of higher order in g. The matrix 
Cc = C 9 k ( v c )  is called the stability matrix; it is the non-trivial part of the Jacobian of 
the implicit equation (1.4a). If the eigenvalues of Cc are not unity, the solution f; can be 
uniquely continued to a solution f 9  of (1.4) for small w. This solution depends smoothly 
on W. A bifurcation singularity is connected with an eigenvalue of Cc tending to unity. 

The point V c  shall now be specialized to the singularity of interest. Let us split the 
variables into two groups: the first one is specified by L variables q = 1, . . . , L and the 
second one by M - L variables q = L+ 1, . , , , M. In an obvious generalization of section 2 
we demand that 

k kP 

V c  9 b  = O  q > L  k , p < L .  (4.4) 

We analyse f ;  for q > L. The other components are non-negative and generically 
0 < f ;  < 1, q < L .  The stability matrix consists of four blocks. There are the two 
diagonal blocks, to be denoted by C("), 01 = 1,2. They are of degree L and ( M  - L) 
respectively: C$ = CGk where q. k < L for a: = 1 and q, k z L for 01 = 2. The L by 
(M - L )  matrix C('m2) we shall abbreviate by C$') = CiP for q < L, k z L. Equation 
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(4.4) implies Cik = 0 for q > L , k  4 L. The elements of the matrices C?, C('), C"' 
are non-negative. Frobenius theory (Gantmacher 1960) implies that the matrices have non- 
negative eigenvalues E ,  E ( ' ) ,  E(z)  respectively, which agree with the corresponding spectral 
radius. The matrix C" is reducible and E = Max(E(", E(')). The results of the general MCT 
(Gotze and Sjogren 1993) ensure E < 1. The condition E(') = 1 would imply generically 
a type-B transition for the first L components. This case shall not be considered in this 
paper. Therefore it will be demanded that E") c I .  Thus the L by L ma& ( I  - d')) has 
an inverse, which can be evaluated as a Neumann series 

T Franosch and W Gotze 

(4.5) 

Obviously, the Lz elements of R are non-negative: Rqk 2 0, q ,  k 6 L. To get a GTS one 
has to request E(') = E = 1. According to Frobenius theory matrix C@) has right and left 
eigenvectors, to be denoted by e and 0 respectively: 

It shall be required that the matrix C") is non-degenerate. Then the eigenvalue E(*' is 
non-degenerate and the eigenvectors are unique up to a positive scale factor. They are 
uniquely fixed if one imposes the conditions 

(4.7) 

Generically none of the numbers e, and 0, is zero. A left eigenvector P c  of Cc for eigenvalue 
E = 1 is given by 

b C = O  q < L  

2 =P' q > L. 

4 

q 4  

A right eigenvector ec can easily be found as 

e' =eq q > L .  1 

These vectors obey normalizations analogous to (4.7). 
The solution shall be written as Q&) = f; + (1 - f;)2gq(t). With 

x q w  = -tiq(t) + v*$(t)l(l - f;)/": 

and the help of 

(4.8) 

(4.9Q) 

(4.9b) 

(4.10) 

(4.11) 
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and substitution of (4.3) one derives for the equations of motion (1.1) the equivalent set of 
equations 

(4.12) c[69x - C&lgx(t) = R90).  
k 

(4.13) 

(4.156) 

where 

Jq ( t )  = Cqk (v)Jgk ( t )  + C [ 2 C q k p  (Vc)e&?p ( t )  ( t )  + cqkp (VC)8gk ( t )6gp ( t )  1 
k kp  

d '  - ( I  -f;);i;l [g& - t ' ) C C ~ ~ S g k ( t ' ) + S g 4 ( r  -tf)e;~(r')ldt'.(4.15c) 

The condition for the solvability of (4.15b) is that the right-hand side is perpendicular to 
2;. With (4.7) this leads to 

k 

t 
y + u@(t )  +A@(t)* - - Q(t - t')@(t')df' = I @ ) .  (4.16) d4l 

Here the following abbreviations are ineoduced 

(4.17~) 
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In noting (4.17b) we used C9(v) = Cq(V) for q L because of (4.4). It is then evident that 
y 2 0, h 2 0. Let us emphasize that the equations (4.35)-(4.18) for the (M + 1) variables 
Q ( t )  and 6g,(r), obeying one subsidiary condition (4.15~). are an exact reformulation of 
the original equations of motion (l.l)-(l.3). 

The obtained equations can be solved by asymptotic expansion for large times and near 
the GTS, i.e. in the limit v + 0. If v --f Vc one finds U + 0 and y + 0. One starts 
with the ansatz Q(t) = g(r) + 0 and treats g and U as leading-order small quantities, while 
19, J,, Sg, are considered as small in higher order. Thus one arrives at 

T F r m s c h  and W Gotze 

(4.19~) 

(4.19b) 

Here the critical amplitudes h, 2 0 are given in terms of the eigenvector e: of the stability 
matrix, as specified in (4.9): 

(4”) 

h r ’ = e i  q L.  (4.20b) 

The function g ( t )  obeys (4.16) with I ( t )  dropped. Hence g(r) is identical with the quantity 
discussed in section 3. The proof is finished by verifying, that 0p) a g2. This task which 
is left to the reader, can be done as demonstrated in section 3. 

The results found formulate the reduction theorem of the MCT for the specified GTS. The 
task to determine the long-time dynamics near the singularity for M correlators Q 9 ( t )  is 
reduced to the evaluation of a single function g(t ) .  The task of studying the dependence of 
Q 9 ( f )  on the large number of control parameters V is reduced to studying the dependence 
on only the two relevant parameters U and y. The shape functions for the correlators or the 
spectra depend on the single parameter A. All systems with the same A exhibit the same 
dynamics, up to two scales c d  and td and up to the amplitude vectors h?). 

h S ’ = ( l - f , ) e ,  e 2 c  q < L  

5. Conclusions 

The motion of electrons between impurities is usually modelled by assuming the latter as 
fixed in a frozen array. Depending on the density of the impurities one gets a percolation 
transition from extended to localized motion for the electrons. This transition can be viewed 
as the simplest example of a glass transition in the Edwards-Anderson sense. It can be 
treated approximately within the simplified mode coupling theory, which deals with the 
cage effect for the dynamics of interacting particles. In this case the cages are formed 
by the impurities. In this paper it was shown that the mentioned ad hoc model can be 
replaced within the MCT by analogous od hoc assumptions. One can start with the standard 
equations dealing with quadratic mode coupling terms, equation (l.3), and impose certain 
conditions on the interaction constants V ( q ,  k, p). Then one can get a part of the variables 
frozen in an ideal glass state. These variables act as an impurity background for the second 
part of the modes. The latter get a mode coupling functional, where linear terms also 
appear, equation (2.3). These linear terms are the necessary conditions for the generalized 
percolation transition. We have developed the general theory for the long-time dynamics 
near such a transition. It was shown that a single control parameter U govems the sensitive 
dependence of the correlators on the coupling coefficients. The separation parameter U is 
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proportional to the difference of some external control parameter x from its critical value 

Application of the MCT to the description of supercooled liquids dealt with type-B 
transitions, where the Edwards-Anderson parameters exhibit discontinuities at the critical 
point xc. This renders the long-time decay a two-step process, characterized by two 
diverging timescales and two time fractals. The dynamics for x > x, differs drastically from 
that for x < x, in thii case (Gotze and Sjogren 1992). The type-A transition, discussed in 
this paper, is quite different. The Edwards-Anderson parameter is continuous at x,; as a 
function of x it exhibits a kink only. The long-time decay is govemed by a single timescale 
td and the critical decay (3.6) is the only time fractal appearing. There is symmetry of 
the dynamics with respect to the critical point xc. The same master functions describe the 
relaxation for x > x, as for x < xc and the scales depend on the distance d = [ U ]  but not 
on the sign of U .  

The described type-A transition can also occur for the model of a symmetric molten 
salt. In this case one considers as the first component the density and as the second the 
charge fluctuations. The assumed symmetry for the interactions restricts the parameter 
space B so that type-A bifurcations for the charge fluctuations within the frozen density 
fluctuations occur on hypersurfaces in B. Shifting the system on a path V(x)  through 
E by a change of the single control parameter x can generically lead to crossings with 
the bifurcation hyper-surface and hence to the transitions under study. However, if the 
symmetry is broken such crossings do not occur generically. Within general models the 
mentioned singularities V c  occur on sets of co-dimensionality larger than unity. Generically 
the path V ( x )  avoids the singularities and either all components exhibit glass behaviour or 
the system is in an ergodic liquid state. But it is a generic possibility that the system is in 
a close neighbourhood of the mentioned type-A bifurcation points Vc. In this case there 
are also long-time or low-frequency anomalies for the dynamics. It was shown that near 
the singularities these anomalies are described by only two relevant conk01 parameters. In 
addition to the separation parameter U only some smearing parameter y 2 0 plays a role. 
The Edwards-Anderson parameter exhibits a smooth but rapid crossover, equation (2.8). 
For large positive U there is a normal glass state with all components frozen so that all 
Debye-Waller factors are of order unity. However, for large negative U the Debye-Waller 
factors of the second components, though non-zero, are very small. For many purposes this 
state will appear as a liquid moving in the glass formed by the first component. 

The identified crossover is connected with dynamical anomalies. Surprisingly, it is the 
same reduction theorem connected with the same scaling law and master functions as found 
for the ideal type-A transition, which describes the crossover. The smearing parameter y 
merely alters the distance 1u1 to an effective distance d ,  equation (3.10). As far as the 
long-time motion or the low-frequency spectra are concerned, the smearing is accounted 
for by renormalizing IuI to a function d ,  which can become small but must not vanish. 
Figures 2-5, which were calculated for the ideal transition, automatically exhibit all the 
leading order dynamical effects €or the general case y > 0 as well. 

Michel (1987) and Bostoen and Michel (1991) worked out a MCT for the deformations 
and orientations in mixed cyanid crystals. They predicted a type-A transition. Neutron 
scattering work (Wochner et a1 1993) verified the predicted anomalies for the Debye- 
Waller factor and also found the expected anomalous low-frequency spectrum, thereby 
strongly supporting the proposed theoretical picture. The present paper extends Michel's 
theory in two respects. It is shown that there may occur a non-trivial exponent parameter 
1. This I # 0 alters, for example, the critical exponent 1/2 to some number a < 0.5. 
Furthermore, there may occur a smearing parameter y > 0, which prevents the system from 

~ . ~ .  

xc : U o( (x  - xc) /xs.  
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reaching the glass transition singularity. In order to test the theory further, the factorization 
property (4.19) has to be verified. The insensitivity of the dynamics on variations of the 
wavevector q is a crucial feature, which distinguishes the M a  scenario from conventional 
phase transitions. Then one has to verify that the spectral enhancement near the critical 
point follows the critical law (3.18) with a < 1/2. Finally, one should test the scaling laws 
as indicated by figure 4 and test the predicted power law variations for the scales. 

T Franosch and W Go@ 
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